Skip Navigation LinksHome > View Blog

Blog

 

Synthetic Gems

A synthetic gem material is one that is made in a laboratory, but which shares virtually all chemical, optical, and physical characteristics of its natural mineral counterpart, though in some cases, namely synthetic turquoise and synthetic opal, additional compounds can be present.
Synthetic gem crystals have been manufactured since the late 1800s, and their production is often marked by a need for them in industrial applications outside of the jewelry industry. The first success was in producing synthetic ruby of faceting quality. Synthetic crystals are used in communications and laser technology, microelectronics, and abrasives. Because synthetics for jewelry applications can be “made to order” [i.e. consistent color and crystal shape] given the right ingredients, time, and the facilities to grow them, they are likely to be much less rare than natural gems of equal size, clarity, and saturation of color. Because of this, and because it is possible to confuse them with gems that are naturally occurring, there are strict guidelines regarding how they are marketed and sold.
In the United States, the Federal Trade Commission requires that any gem material produced in a laboratory be described in a way that leaves no doubt that it was not produced naturally. It is considered to be a deceptive practice if a synthetic gem material’s origin is not clearly disclosed throughout the distribution channel at the time of sale, from the manufacturer to the consumer. There are also a number of industry organizations such as the American Gem Trade Association (AGTA), the International Colored Gemstone Association (ICA), and the World Jewellery Confederation (CIBJO) that have formulated specific guidelines for their members regarding the disclosure of synthetic gems at the time of sale. In the last decade fewer new kinds of man-made gem materials have been marketed. This suggests that the repertoire of synthetic gem materials is close to reaching its limit in terms of the creation of new materials, but it is not limited in production which is still very significant. During the last century, researchers have developed a number of different ways to create these synthetic gem materials in the laboratory. Most of these methods fall into two major categories – melt or solution.
In melt processes, the chemical composition of melt is the same as the composition of the resulting crystal. In solution processes, the solution or melt has a different chemical composition than that of the resulting crystal. Constituents are dissolved in the solution or melt at high temperature, and the crystal forms initially on a seed crystal as the melt temperature is lowered. Some of the main synthetic processes include:FLAME FUSION OR VERNEUIL PROCESS (MELT PROCESS)The first commercially successful synthetic gems were created by the flame fusion process. This process involves dropping powdered chemicals through a high-temperature flame, where it melts and falls onto a rotating pedestal to produce a synthetic crystal. Today it remains the least expensive and most common way to make gems such as synthetic corundum and spinel.
CRYSTAL PULLING OR CZOCHRALSKI PROCESS (MELT PROCESS)Pulling emerged in the early 1900s. In this process, nutrients are melted in a crucible and the synthetic crystal grows from a seed that is dipped into the melt, and then slowly pulled away from the melt as it grows. Gems synthesized by pulling include synthetic alexandrite, chrysoberyl, corundum, and garnet.
FLUX GROWTH (SOLUTION PROCESS)Today some synthetic gems, such as emerald, ruby, sapphire, alexandrite, and spinel can be created through a flux-growth process. Flux is a solid material that, when melted, dissolves other materials in the same way that water dissolves sugar. As the dissolved chemical solution gradually cools, synthetic crystals form.
Growing a synthetic gem by the flux method requires patience and significant investment. Crystal growth can take up to a year, and the equipment is very expensive. But the results, especially when it comes to emerald, are well worth the time and effort.
HYDROTHERMAL GROWTH (SOLUTION PROCESS)Like the flux process, the hydrothermal growth process is slow and expensive. But it’s the only method for successfully growing synthetic quartz. This process requires heat and pressure and imitates the conditions deep in the earth that result in the formation of natural gems. Nutrients are dissolved in a water solution, and then synthetic crystals form as the solution cools.
While the following list encompasses the commonly seen synthetics, over the years there have also been experimental synthetic gems. These include malachite, color change synthetic spinel and others. But because nature produces these products more readily, they are not often seen today. Some of the synthetic gems that are more frequently encountered include: